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ABSTRACT 

 

MODEL-BASED EVALUATION OF THE CONTROL STRATEGIES OF A 

HAND REHABILITATION ROBOT BASED ON MOTOR LEARNING 

PRINCIPLES 

 

 

 

Yağmur, Onur Can 

Master of Science, Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Ali Emre Turgut 

Co-Supervisor: Assist. Prof. Dr. Kutluk Bilge Arıkan 

 

 

January 2022, 62 pages 

 

Stroke is an important health problem that occurs after blockage or bleeding in the 

vessels feeding the brain. It is one of the leading causes of death in the world. Patients 

with surviving hemiplegia often have a loss or decrease in voluntary movement of 

the right or left side of the body. The disease reduces the quality of life of patients 

with its spasticity and limits their independence; This situation poses an important 

problem for patients, their relatives, and the whole society. This thesis aims to 

develop control strategies for a robotic hand rehabilitation exoskeleton, which 

focuses on recovery based on motor learning principles, for patients with hemiplegia. 

The targeted system is designed to support/encourage motor learning. In this way, it 

is aimed to increase the effectiveness of therapy. Simulink/ MATLAB is used for 

both the simulations of the mechanism and the patient. To maximize motor learning 

in the therapy process, it has been suggested that the control system should be 

developed under assist as needed approach. Detailed mathematical models that 

describe the resistance torques in the joints include the mechanics of contact and 

interaction with the object squeezed during the pinching action. Reinforcement 

learning is used to model the cortical reorganization and to simulate the patient in 
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the therapy process. Kinematic and admittance control strategies are used for 

rehabilitation simulations and slacking hypothesis is investigated. Admittance 

controller results in less slacking compared to kinematic controller. Moreover, the 

effect of spring stiffness in the admittance controller over learning is investigated. 

Keywords: Rehabilitation Robotics, Kinematic Controller, Admittance Controller, 

Reinforcement Learning 
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ÖZ 

 

EL REHABİLİTASYON ROBOTU DENETÇİLERİNİN MOTOR 

ÖĞRENME İLKELERİNE DAYALI MODEL ÜZERİNDE 

KIYASLANMASI 
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Ocak 2022, 62 sayfa 

 

İnme, beyni besleyen damarlarda tıkanma veya kanama sonrası oluşan önemli bir 

sağlık sorunudur. Dünyada önde gelen ölüm nedenlerinden biridir. Sağ kalan 

hemiplejili hastalarda genellikle vücudun sağ veya sol tarafının istemli hareketinde 

bir kayıp veya azalma olur. Bu durum hastalar, hasta yakınları ve tüm toplum için 

önemli bir sorun teşkil etmektedir. Bu tez, hemiplejili hastalarda motor öğrenme 

ilkelerine dayalı iyileşmeye odaklanan bir el rehabilitasyon robotu için kontrol 

stratejileri geliştirmeyi amaçlamaktadır. Hedeflenen sistem, motor öğrenmeyi 

desteklemek/teşvik etmek için tasarlanmıştır. Bu şekilde terapinin etkinliğinin 

arttırılması hedeflenmiştir. Mekanizma, denetçi yapısı ve hasta modeli için 

Simulink/ MATLAB programı kullanılmıştır. Terapi sürecinde motor öğrenmeyi en 

üst düzeye çıkarmak için, kontrol sisteminin gereği kadar destek prensibi altında 

geliştirilmesi önerilmiştir. Pekiştirmeli öğrenme, kortikal yeniden yapılanmayı 

modellemek ve terapi sürecinde hastayı simüle etmek için kullanılmıştır.  

Rehabilitasyon simülasyonları için kinematik ve admitans denetçiler kullanılmış ve 

tembellik hipotezi araştırılmıştır. Admitans denetçinin, kinematik denetçiye kıyasla 
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daha az tembelliğe sebep olduğu görülmüştür. Ayrıca, admitans denetçideki yay 

sertliğinin öğrenme üzerine olan etkisi araştırılmıştır. 

Anahtar Kelimeler: Rehabilitasyon Robotiği, Kinematik Denetçi, Admitans 

Denetçi, Pekiştirmeli Öğrenme
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CHAPTER 1  

1 INTRODUCTION  

Hemiparesis and hemiplegia are the most common results of a stroke. An increasing 

number of people suffer from these conditions each year.   Recovery methods have 

been developed over the past decades and among these robot-assisted rehabilitation 

therapy stands out from the conventional therapy methods. Early studies were mostly 

focused on the mechanical design and designing a robot that can help the patient to 

achieve the desired therapy such as following a trajectory of a reaching arm.   Then, 

it is found out that if the robot fully assists the patient it results in laziness and harms 

the recovery process (slacking). Therefore, control methods of therapy robots have 

a great effect on rehabilitation robotics. Early studies mostly focus on impedance, 

stiffness, and force control of the various robots designed for reaching, grasping, 

walking, etc. Assistive robotic devices help patients to complete required 

rehabilitation task. However, it is found out that repeated movements with small 

errors result in no motor recovery, which harms the rehabilitation process by 

encouraging laziness of the impaired body part named as slacking. 

There are various types of rehabilitation robots focused on the therapy of different 

limbs such as upper limb therapy robots, walking therapy robots, and robots for hand 

rehabilitation, etc. Hand rehabilitation is the stimulus of this study. A previously 

designed hand rehabilitation robot is used as a model and the aim is to improve and 

evaluate the control strategies for hand rehabilitation [1]. 

In this thesis, two control strategies namely, Proportional – Integral – Derivative 

(PID) and admittance control performances on motor learning during the therapy 

process are compared. A robotic hand exoskeleton rehabilitation robot designed by  

[2] is used for the model. The exoskeleton for the hand is designed for index and 
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thumb fingers for the left hand and pinching of a spring action is modeled. 

Reinforcement learning is applied to model the motor learning of the patient during 

rehabilitation. It is aimed to simulate the slacking phenomena due to the kinematic 

control system, i.e., the PID based position control. In addition, the advantage of 

interaction type control system, i.e., the admittance control, upon the kinematic 

control is discussed. The performances are assessed for typical circular pinching 

motion including the thumb and index fingers equipped with the exoskeleton 

mechanism. The physical implementation on patients is out of the scope of the thesis.
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CHAPTER 2  

2 LITERATURE REVIEW 

Recovery after stroke and robot-assisted rehabilitation is a complex process that 

requires the study of stroke, motor learning, rehabilitation robots, and control 

methods of the robots. In the following parts, these aspects of recovery are presented. 

2.1 Stroke and Motor Learning 

Stroke is a serious health problem that affects millions of lives each year. It is mainly 

caused by the death of brain cells which is a result of hemorrhage into the brain or 

blockage of oxygen-rich blood flow through arteries into the brain[3]. Stroke may 

result in disabilities in movement, talking, etc. as well as death [4]. It is stated by the 

World Health Organization (WHO) that over 15 million people suffer from stroke 

each year and the number of people that suffer from stroke is expected to be higher 

in the next decades [4], [5]. Due to the permanent damage in the brain, hemiparesis 

and hemiplegia are the most common long-term results. Most of the severely 

impaired patients cannot perform activities of daily living (ADL) and human or 

robotic assistance is required [6]. It is found out that upper limbs (i.e., hand) have 

more impact than others to perform ADL [5] – [7]. An impairment in hand function 

would have a significant influence on the patient's quality of life, implying a greater 

emphasis on hand motor rehabilitation. However, whereas most patients achieve 

good motor recovery in the proximal upper extremity, recovery in the distal upper 

extremity has been restricted owing to poor effectivity [10]. Fine motor skills are 

difficult to recover. 
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There are two primary explanations for the difficulties encountered during hand 

rehabilitation. To begin, the hand has more than 20 degrees of freedom (DOF) during 

movement, making it challenging for therapists or training equipment to match 

satiety and diverse movement requirements [11]. Second, the region of the cortex 

associated with the hand is much greater than that associated with the other motor 

cortex, implying a high degree of flexibility in creating a range of hand postures and 

controlling the specific joints of the hand. However, the majority of research to date 

has concentrated on the opposite, on the absence of individuation in finger motions 

[12], [13]. Improved rehabilitative treatments are critical. Robot-assisted treatment 

for post-stroke rehabilitation is a novel kind of physical therapy in which patients 

train their paretic limbs by using or resisting the robots' force [14]. For instance, the 

MIT-Manus robot uses an amassed training strategy to train the upper limbs by 

performing reaching actions [15]; the Mirror Image Movement Enabler (MIME) 

employs a bilateral training technique to educate the paretic limb [16].  

 

Figure 2.1. MIT Manus Robot [15]. 
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Robot-assisted treatment has advanced significantly over the last three decades as a 

result of advancements in robotic technology and bioengineering and has established 

itself as a significant addition to conventional physical therapy [18], [19]. For 

example, in contrast to the therapist who is weary from teaching patients via physical 

work, exoskeleton given in [20] allows patients to move their fingers dexterously 

and repeatedly [20], [21]. Additionally, certain robots may be controlled by bio 

signals such as electromyography (EMG) and electroencephalography (EEG) signals 

derived from a patient's desire [22], [23]. These enable the creation of a closed-loop 

rehabilitation system using robotic technology, which is not achievable with any 

other kind of rehabilitation treatment [24]. 

One important method used in post-stroke rehabilitation is mirror therapy. In this 

method, a mirror is placed on the patient's weak extremity. The patient is asked to 

move his healthy extremity. The patient monitors the movement of the intact 

extremity as the movement of the stroked extremity. The method used here is based 

on the knowledge that thinking about movement and performing movement develop 

as a result of the activity of the same anatomical structures. In imaging studies, it has 

been shown that performing a movement and only thinking about that movement, 

thinking as if it is being done (imagination, motor imagery) or just watching the 

movement activate the common nervous system structures. In mirror therapy, it is 

aimed to activate the damaged motor cortex, which is not sufficiently activated by 

voluntary movement due to paralysis, by monitoring the movement and adapting the 

motor plasticity [25]. Robotic mirror therapy, on the other hand, aims to apply the 

same movement to the limb that has weakness or loss of function, using the robot, 

while monitoring the movement.  

It has been observed that mirror neurons play a role in different areas such as 

imitation, social learning, motor learning, and interpretation of the observed 

movement [26]. It is emphasized that mirror neurons have an important role in 

cortical restructuring during the post-stroke therapy process [27]. The cortical 

processes and mechanisms used during motor skill acquisition in healthy people are 

also seen in the process of complete recovery with therapy. The model utilized in 
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this thesis was built for a robotic mirror therapy system for hand rehabilitation [2], 

[28]. The simulation framework will be further developed to include the role of 

mirror neuron system on motor learning. 

Mirror Neurons are a group of visual-motor neurons that are activated when 

observing an action and performing the same action. Neurons with this feature have 

been observed in the F5 and PF regions of the premotor cortex in monkeys [29]. 

Since it is not possible to observe a single mirror neuron electrophysiologically in 

humans, research is steered to the "mirror neuron system (MNS). There are studies 

showing that the neuron system, which is active in the ventral premotor cortex and 

the rostral inferior parietal lobule regions, mediates the observation and 

understanding of the action [30]. It is stated that mirror neurons take an active role 

in the mechanism behind mirror therapy and the related neuroplasticity which is the 

core mechanism behind the motor learning.  

Motor learning can be defined as the improvement of fluency, accuracy, and 

precision of movement performance depending on experience [30]. Speaking, riding 

a bike, and playing an instrument are examples of complex motor control practices 

which are the outcomes of advanced motor learning process. In addition, calibrating 

reflexes according to the current body condition and environmental conditions can 

be given as an example of motor learning. In the learning process, depending on the 

feedback, useful actions are reinforced while the probability of performing unhelpful 

actions decreases. The motor skill attained by motor learning improves with practice 

and repetition. Motor outputs (movements) are realized through hierarchical neural 

structures. Inputs from spinal motor neurons trigger muscle movements. Motor 

neurons emerging from the spinal cord receive information about the environment 

and body position from sensory neurons reaching the spinal cord level; this type of 

information is generally useful for the realization of reflexive behaviors. These motor 

neurons also receive inputs about body position and balance from centers located in 

the brainstem and mesencephalon (midbrain). However, the main input of these 

neurons comes from neurons in the primary motor cortex (M1) via the corticospinal 

tract. In the brain, direct cortical information to M1 comes from the secondary motor 
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cortex (M2), posterior parietal cortex (PPC), and prefrontal cortex (PFC) regions. 

PPK acts as a bridge between sensory cortical regions (primary visual cortex, 

primary auditory cortex, somatosensory cortex) and M1. In addition, the PFC also 

performs functions related to the cognitive aspect of the movement. M1 is modulated 

by two main feedback networks. The first of these modulatory links is the basal 

ganglia. Brain regions connected to this system perform important functions in 

selecting and triggering movements. The second modulatory system is managed by 

the cerebellum. The cerebellum plays a role in motor coordination and motor 

learning based on cortical feedback, as well as playing a role in the processing of 

motion predictions and feedback [31]. Recovery after stroke is governed by the same 

motor learning process as the one in healthy people. Therefore, recent rehabilitation 

protocols aim to understand the motor learning in healthy subjects and promote the 

motor re-learning sequences in stroke patients. 

Existing assessments of the effects of hand rehabilitation robotics on post-stroke 

motor recovery are insufficient, with the majority of studies focusing on the use of 

robot-assisted treatment on other limbs rather than the hand [24]. Additionally, 

current studies emphasize either the hardware design of the robots or the use of 

specific training paradigms [24], [32], even though both are necessary components 

of an efficient hand rehabilitation robot. The hardware system acts as the basis for 

the robot's functionality. Together with the control system topology and 

performance, the overall robotic system has the potential to be the main source for 

motor recovery. In the following 2 sections hand rehabilitation robots in the literature 

and control methods for rehabilitation robots are going to be presented. 

2.2 Hand Rehabilitation Robots 

In kinematic terms, the human hand may have twenty degrees of freedom (DOFs). 

All fingers have four degrees of freedom. Each of the index, middle, ring, and little 

fingers has three joints. The joints are classified as follows: distal interphalangeal 

(DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP). The DIP 
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and PIP joints have flexion/extension degrees of freedom, while the MCP joints have 

flexion/extension and abduction/adduction degrees of freedom [33]. 

The thumb has three joints and four degrees of freedom. The joints are numbered 

from distal to proximal: interphalangeal (IP), metacarpophalangeal (MCP), and 

carpometacarpal (CMC) [33]. While the IP and MCP joints have flexion/extension 

degrees of freedom, the CMC joint has both flexion/extension and abduction/ 

adduction degrees of freedom. 

Exoskeletons for the hands or active hand orthoses are a kind of robotic hand. In 

comparison to other types of robotic hands, a hand exoskeleton is a mechanical 

system that is actively controlled and linked to a human hand, allowing the two 

systems to move together by interaction. Rehabilitation exoskeletons are used to 

reduce the spasticity in hand by performing rehabilitation protocols and aim to reach 

the motor recovery.  

There are several categorization schemes for hand rehabilitation robots, some of 

which follow mechanical design conventions (which concentrate on the hardware 

system) and others that follow rehabilitation conventions (which focus on the 

training paradigms) [34]. Indeed, each of these categorization schemes has inherent 

value and is dependent on the others. For instance, the hardware system is dependent 

on the rehabilitation robots' fundamental capabilities (e.g., movement and feedback 

information), while the training paradigms are the primary functional components of 

recovery (e.g., application of certain rehabilitation theories) [33]. In the following, 

hand rehabilitation robots are classified under two main categories with their 

mechanical design aspects.  

2.2.1 End Effector Hand Rehabilitation Robots 

The end effector is located exterior to the patient's body and supplies the necessary 

force to the end of the user's extremities to assist or resist motion. For instance, a 

robotic system AMADEO which is also a commercial product given in Figure 2.2 is 
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a specialized robot that performs task-related training by automating the extension 

and flexing of fingers sequentially or simultaneously. The linear (2 DOF) forward 

and backward motion simulates the grabbing action in a continuous and ergonomic 

manner, after attaching, the fingertip and thumb are supported by the finger and 

bending and stretching actions may be done in conjunction with the slider. Each 

patient's strength and tempo were specifically adjusted. The total number of gripping 

motions, their speed, strength, and range of motion were recorded and used as 

recovery data [35].  

 

Figure 2.2. AMADEO Hand rehabilitation robot [36] 

HandCARE given in Figure 2.3 is another end effector aims to provide an interface 

for training distal regions of the upper limbs that combines the benefits of both non-

actuated and active robotic devices [37].  Each finger is connected to an instrumented 

cable loop, allowing for force control and linear movement [33]. The end effector 

generates force without regard to the particular joint movements of the patients' 

limbs, resulting in limitations in range of motion and dead point difficulties. It is 

intended to allow poststroke patients to train at home or in rehabilitation clinics via 

the use of virtual reality (VR) game-like activities. Additionally, the interface is 

adaptable to the biomechanics of the patient, easy to use, and be cost-effective [37]. 
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Figure 2.3. HandCARE Hand rehabilitation robot [37] 

2.2.2 Exoskeleton Hand Rehabilitation Robots 

The exoskeleton rehabilitation robots are to be worn by patients while the robot's 

joints and linkages match directly with the joints and limbs of the patient [38]. For 

instance, an exoskeleton given in Figure 2.4 is a robotic device detects the intention 

of the patient with impaired hand by measuring the EMG signals and assists the hand 

for open/ close actions [39]. 

Each hand module is made up of five finger assemblies and a platform for the palm. 

Each finger assembly is operated by a single linear actuator, and the mechanical 

linkage system offers two degrees of freedom for each finger at the MCP and PIP. 

The finger assembly offers a range of motion of 55 degrees and 65 degrees for the 

MCP and PIP joints, respectively, from fully extended to completely flexed position 

[39]. 
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Figure 2.4. A hand exoskeleton robot [39] 

Another exoskeleton device for hand rehabilitation, HANDEXOS, which is compact 

and lightweight given in Figure 2.5. The mobility of the exoskeleton makes it an 

attractive option for stroke rehabilitation, particularly for patients in the latter stages 

of the disease who can train at home [40].  

The primary concern of HANDEXOS is to provide complete hand mobility with 

natural rotational movement and to do this, the number of degrees of freedom is 

equivalent to that of the natural hand skeleton. Additionally, the design criteria were 

tried to be kept as inclusive as possible. Average values of 51mm, 26mm, and 25mm 

for the index finger from the proximal to the distal phalanx were chosen, but the 



 

 

12 

exoskeleton was designed to partially fit over hands of varying sizes via a passive 

and adjustable mechanism on the intermediate phalanx [40]. 

 

Figure 2.5. HANDEXOS rehabilitation robot attached to index finger [40] 

Although there are challenges, such as aligning the robot's axes with the anatomical 

axes of the hand, exoskeleton robots are commonly utilized in rehabilitation robotics 

and have advanced significantly in recent years. The use of functional degrees of 

freedom to simplify complicated multi-DOF motions and the development of soft-

bodied robots both enhance the use of exoskeleton robotics [41]. Nowadays, 

exoskeleton robots becoming more popular in post-stroke rehabilitation. 

2.3 Control Methods for Rehabilitation Robots 

The aim of the post-stroke rehabilitation process is to reach motor recovery by the 

application of selected/designed therapy protocols. The purpose of the control 

algorithms is to promote motor learning network to gain motor recovery. Control 

algorithms can be grouped under the following categories: 
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• Assistive  

• Challenge-based  

• Haptic simulation (ADL) 

Among these 3 categories, the most important and developed algorithm used for 

rehabilitation is the assistive control approach. Assistive control algorithms basically 

help patients to complete the required rehabilitation task such as pinching, grasping, 

walking, reaching, etc. Challenge-based control algorithms apply resistance to the 

rehabilitation movement such as counterforce field or extra stiffness. In haptic 

simulation-based approaches, activities of daily living (ADL) are simulated in a 

virtual environment [42]. In the following sections, assistive controllers are going to 

be presented. 

2.3.1 Assistive Controllers 

As mentioned before, the aim of the assistive controllers is to help patient to make 

the movement however, it is found out that too much assistance results in counter 

effect on the recovery and causes slacking. For example, an upper limb, adaptively 

controlled, compliant rehabilitation robot to provide reaching tasks with "taking 

over" a reaching job from the patient, lowered patient’s own force production, 

resulted in the robot to perform more of the effort than patient of raising their arm 

[43]. According to the motor learning perspective, motor error and variability are 

required for learning. Kinematically stiff control systems don’t let the motor system 

make error and consequently neuroplasticity mechanisms are being provoked. 

Similar findings suggest that providing too much assistance harms the rehabilitation 

process. As a result, “assist as needed” approach is developed so that assistive 

controllers to aid as little as possible to patient to accomplish the rehabilitation task. 

In Figure 2.6 an assist as needed controller given is applied to the Pneu-WREX [44] 

upper extremity rehabilitation robot.  
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Figure 2.6. Assist as needed controller diagram [45] 

Assistive controllers can be grouped under five categories as follows:  

• Impedance-based 

• Admittance-based 

• Counterbalance-based 

• EMG-based 

• Performance-based 

2.3.1.1 Impedance-Based Assistance 

Impedance control is used to create a desirable dynamical connection between the 

location of the end-effector and the applied force. Mechanical impedance Z is the 

relationship between velocity 𝑋̇ and applied force F. The control loop has the effect 

of altering the manipulator's damping constant as it comes into touch with the 

surroundings. 
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Figure 2.7. Impedance control scheme of a robot manipulandum [46] 

Assistive controllers should not provide input to the robot as the patient moves on 

the desired trajectory. When the patient deviates from the desired trajectory, it is 

expected the robot to intervene and keep the patient on the desired trajectory (reduce 

error) by creating a restoring input due to a mechanical impedance. For example, a 

Proportional – Derivative (PD) controller output would increase as the patient 

deviates from the desired trajectory since the controller acts as a damped spring. A 

type of impedance-based assistance is triggered assistance. In triggered assistance, 

the participant can try a movement without the help of the robot but automatically 

begins some sort of impedance-based aid when a performance variable hits a 

threshold value. This kind of triggered assistance promotes self-initiated movement, 

which is regarded to be crucial for motor learning [47]. A variation of the triggered 

assistance is used to control the hand rehabilitation robot HWARD  [48]. If the force 

applied by the patient is below a threshold for a fixed time and/or the patient cannot 

complete the task, the robot assists the patient to finish the task. This approach is 

called time-triggered assistance. 
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Figure 2.8. HWARD hand rehabilitation robot. 

2.3.1.2 Admittance-Based Assistance 

The admittance control specifies a force setpoint, which is monitored by a force 

compensator. In contrast to control strategies that rejects disturbance forces in order 

to maintain a set reference motion trajectory, the force compensator aims to conform 

to environmental interactions and respond fast to contact forces by rapidly altering 

the reference motion trajectory [46]. The admittance matrix A in Figure 2.9 is used 

to link the force error vector E to the end-effector velocity perturbation. Effective 

and accurate admittance control may be done by selecting an A matrix that is 

appropriate for the environment's known stiffness. When the environment changes 

dramatically, A matrix should be updated to adapt to the new situation. Adaptive 

algorithms enable the admittance value to be changed in response to changes in the 

environment [46]. Admittance control structure is suitable for robotic applications 

that contain human factor (i.e., rehabilitation) since human interaction causes an 

unpredictable change in the environment. 

 



 

 

17 

 

Figure 2.9. Admittance control scheme of a robot [46] 

2.3.1.3 Counterbalance-Based Assistance 

Another assistive method is to provide a limb with a counterweight of its own weight. 

Patients in rehabilitation facilities have long relied on equipment such as arm 

skateboards or towels that slide on tables and harnesses to offset the weight of their 

bodies when they walk to help them regain their mobility. When it comes to 

rehabilitation, the use of swimming pools may also be seen as a variation of this 

approach: buoyancy aids active assistance.  

Newer devices include passive counterbalancing systems that allow for a broader 

range of motion than previously used clinical devices [49]. There are several options 

for counterbalancing the weight of an arm, such as Therapy-WREX, which is based 

on WREX's movable arm support and incorporates two four-bar linkages and elastic 

bands [49]. A therapist may adjust the amount of support provided by adding or 

removing elastic bands based on the degree of impairment shown by the participant. 
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Figure 2.10. T-WREX upper limb rehabilitation robot [49] 

2.3.1.4 EMG-Based Assistance 

Using EMG signals captured from specified muscles, it is possible to activate 

assistance when a person exerts effort. The MIT-MANUS robot provides an example 

of an EMG-triggered assistance in which signals from various muscles in the 

shoulder and elbow are gathered and the assistance is activated when the processed 

EMG signals rise beyond a threshold [50]. 

 



 

 

19 

2.3.1.5 Performance-Based Assistance 

Control strategies reviewed above are based on fixed control parameters. It is 

advantageous to adapt control parameters during the therapy process based on 

individual patients' needs [50]. Patient-cooperative training procedures, designed 

originally for the Lokomat, make extensive use of "adaptive control parameters," 

which allow the robot to take into consideration the patient's intentions rather than 

imposing a rigid control approach [51]. For MIT-MANUS, it's a critical component 

of the "performance-based, progressive robot-assisted treatment" control method 

[50]. There have been several adaptive strategies of this type: 

𝑃𝑖+1 = 𝑓𝑃𝑖 − 𝑔𝑒𝑖                                                    (1) 

where, 

𝑃𝑖: control parameter (ex. gain of the robot assistance) 

𝑒𝑖: performance, error measure (ex. ability to reach a target) 

f: forgetting factor 

g: gain factor 

For MIT-MANUS, a performance-based, position-feedback assistive controller was 

developed that gave participants the option of moving faster than the planned 

trajectory. The length of the targeted trajectory and the stiffness of the robot 

controller were adjusted to make the reaching task easier for participants with greater 

impairments. 

The introduction of a forgetting term in this kind of error-based adaptive controller 

addresses the possibility of participant laziness in response to help. Without 

forgetting (f = 1), if the performance error is zero, the method maintains the control 

parameter constant and does not push the participant further. If, on the other hand, 

the forgetting factor is set to 0, the error-based learning algorithm decreases the 

control parameter when performance error is modest, effectively always challenging 
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the participant. Recently, adaptive controllers with forgetting factors have been 

developed [52] to gradually lower the feedforward assistive force for reaching when 

tracking mistakes are modest. It's worth noting that the human motor system, when 

adapting to new dynamic situations, seems to include such a forgetting element into 

an error-based learning rule in order to limit its own effort. 

Within the scope of patient cooperation, an impedance-based assistive controller was 

developed for Lokomat. When the patient's effort decreases below a certain 

threshold, mechanical impedance is increased. A similar approach was developed 

for controlling an ankle-foot orthosis used for the recovery of the foot gait [53]. 

 

 

Figure 2.11. Adaptive controlled ankle foot orthosis [53] 

Rehabilitation is a complex process that contains many different aspects. The overall 

aim is to help a patient to recover motor skills lost due to stroke. Up to now, it is 

known that robotic rehabilitation is superior to conventional rehabilitation methods. 
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Developments in robotic technologies create an opportunity for the treatment of 

various stroke patients of different types to accomplish different tasks. With the 

advancements in the hardware design of robotic devices, the controllers are gaining 

great importance since the control strategies have great influence over therapy. 

Mostly, assist as needed approach is modeled with an assistance function changing 

the impedance controller output [44].  

In this thesis an internal reinforcement learning model that represents a patient is 

presented and two control strategies’ performances are compared over the therapy 

process. One of the main contributions is the investigation of slacking in 

rehabilitation with a stiff kinematic controller and an admittance controller. 
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CHAPTER 3  

3 METHODOLOGY 

In the following sections human index and thumb finger joint dynamics and a hand 

rehabilitation robot will be presented so that they can be simulated and combined in 

a simulation environment to model a human hand with spasticity to promote motor 

recovery.  

3.1 Index and Thumb Finger Passive Torque Dynamics 

To design a hand rehabilitation robot, it is crucial to model the finger joints. In Figure 

3.1 the simplified model of an index finger is given. It is modeled that three joints 

and four segments in the extension–flexion plane provides the necessary motion of 

the index finger [54]. 

 

Figure 3.1. Human index finger model [54] 
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The passive joint torques in the human finger act as resistance to motion [31]. The 

following equation (2) is a typical model for a healthy human finger. Static and 

passive torque dynamics are introduced for each joint of the index finger and thumb 

finger. For joint j, the resultant passive joint torque, 𝜏𝑗 is determined as follows:   

𝜏𝑗 = 𝜏𝑗
𝑠 − 𝐵𝑗𝜃̇𝑗 − 𝐾𝑗(𝜃𝑗)∆𝜃𝑗                                       (2) 

where,  

𝜏𝑗
𝑠: static passive torque (a function of (𝜃𝑗 − 𝜃𝑗+1)) 

B: damping stiffness coefficient (function of 𝜃𝑗) 

K: dynamic stiffness coefficient (function of 𝜃𝑗) 

Table 3.1 illustrates the physiological static passive joint torque and Table 3.2 

illustrates the stiffness and damping at each joint, as described in [54]. 

Table 3.1 Static passive torque 

Joint 𝜏𝑠 

DIP −0.103𝜃3 + 0.102𝜃2 − 0.052𝜃 − 0.019 

PIP 0.056𝜃3 + 0.016𝜃2 − 0.132𝜃 + 0.015 

MCP −0.071𝜃3 + 0.14𝜃2 − 0.154𝜃 + 0.0129 

 

Table 3.2 Stiffness and damping coefficients 

Joint K (N.m/rad) B (N.m.s/rad) 

DIP 0.38𝜃2 − 0.09𝜃 + 0.13 81 

PIP 1.06𝜃2 − 0.76𝜃 + 0.4 105 

MCP 1.02𝜃2 − 0.54𝜃 + 0.45 142 
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The passive joint torques are introduced in the mathematical model of the thumb and 

index fingers with exoskeleton mechanisms. Multibody dynamical model of the 

integrated finger-exoskeleton system in built in SimMultibody environment and the 

control systems are implemented in Simulink. 

3.2 Exopinch Exoskeleton Mechanism 

The model of the Exopinch exoskeleton system [2] as shown in Figure 3.2 – Figure 

3. 5 is used to study the performances of control systems in terms of motor learning. 

For the index finger, a fully actuated 2 DOF mechanism is used. The mechanism 

consists of four 4-bar mechanisms. Note that, the index finger has 3 DOF in the 

extension–flexion plane but the DOF of the mechanism is 2. For simplicity, 

mechanism is designed in a way that 2 actuators (inputs) drive MCP and PIP joints 

directly and DIP joint is driven indirectly. A similar 1 DOF mechanism is used for 

the thumb finger. 

A PIP joint-driven system is used to control thumb finger. The underactuated 1 DOF 

mechanism is constructed from two 4-bar loops in such a manner that the actuator 

directly drives the PIP joint and drive the DIP joint indirectly through the MCP and 

PIP joints. The thumb finger has 2 DOF in the extension-flexion plane. Under-

actuation is avoided by modeling the MCP joint's motion as it was coming from the 

patient so that one of the torque outputs of the reinforcement learning block drives 

the MCP joint of the thumb finger. The reduced degrees of freedom gained simplify 

both the mechanism and the controller. Controlling this under actuation will need 

more research. 

Two actuators of the index finger are placed at the M1 and M2 shown in Figure 3.3 

at 𝐴0 and 𝐻0. For the thumb finger, one actuator is placed at the M3 as shown in 

Figure 3.5. at 𝐴10. Since the thumb finger is driven by 1 actuator, it is an under 

actuated mechanism.  
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Figure 3.2. Topology of the index finger mechanism 

 

 

Figure 3.3. Index finger mechanism manufactured and assembled 
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Figure 3.4. Topology of the thumb finger mechanism 

 

 

Figure 3.5. Thumb finger mechanism manufactured and assembled 
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3.3 Simulation Modeling 

Exopinch exoskeleton mechanism is designed in Solidworks and exported using 

Simscape Multibody Link. System is modelled in Simulink/MATLAB and Simscape 

Multibody Toolbox is used. In Figure 3.6 Simscape animation of the model is shown. 

Passive torques in the joints of index and thumb fingers are applied in the 

simulations. Each finger joint and revolute joints in the mechanism is modeled as 

revolute joint in the Simscape model.  

 

Figure 3.6. Simulink animation of the Exopinch mechanism 

Spasticity is modeled by increasing the spring and damping coefficients of the 

passive torques. System is modelled as if fingers were pinching a spring-like elastic 

object during rehabilitation. It is a typical task in a therapy session. In Figure 3.7 the 

tip force applied to index and thumb finger due to the pinching of the elastic object 

is given. By altering the stiffness coefficient of the spring, tip forces are changed. 
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Figure 3.7. Pinching force applied to the finger tip  

3.4 Controller Design 

To control the mechanism in the extension flexion plane for both index and thumb 

fingers, two control strategies are used. First the kinematic control is implemented 

as a PID control structure given in Figure 3.8 and Figure 3.9. Then, admittance 

control structure given in Figure 3.10 and Figure 3.11 is used. Control structures are 

implemented separately for each finger.  

𝑅𝜃2
, 𝑅𝜃9

 and 𝑅𝜆2
are the reference angles for motor 1 (M1), motor 2 (M2) and motor 

3 (M3) for the kinematic controller. 𝑇1, 𝑇2 and 𝑇3 are applied to the exoskeleton 

mechanism by M1, M2 and M3 respectively. The references are calculated by using 

the inverse kinematic model to simulate the pinching action of various types. 



 

 

30 

 

Figure 3.8. Architecture of PID controller for index finger  

 

Figure 3.9. Architecture of PID controller for thumb finger 

𝑅𝜃4
, and 𝑅𝜃7

 are the reference inputs calculated by inverse kinematics for index 

finger MCP and PIP joints respectively. Similarly, 𝑅𝜆4
, and 𝑅𝜃7

 are the reference 

inputs for the thumb MCP (TMCP) and PIP (TPIP) joints respectively as shown in 

Figure 3.9. Motors are assumed to be ideal in the simulations. Reference inputs are 

calculated by trial and error so that a pinching action is modeled. In addition, 

references from [2] are used to verify the reference inputs. 

Neural networks are trained by implementing the Reinforcement Learning Toolbox 

provided by Simulink/MATLAB [55] to model the motor learning and motor control 

processes. Parameter settings for the reinforcement learning is case dependent and 

determined by trial and error. Reward function for the reinforcement learning has 

significant effect over the system performance and learning. The following reward 

function, R is used for the system to model positive and negative reinforcement (i.e., 
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the penalty) to the neural network thus to the patient. 𝑟1, 𝑟2 and 𝑟3 are determined 

experimentally by trial and error and modeled such that they can be changed 

throughout the recovery process; however, in this study they are kept constant. In 

human motor re-learning, kinematic and kinetic features of functional recovery at 

the tip point and joints do not evolve simultaneously. The time varying 𝑟𝑖′𝑠 will be 

used to make more realistic simulations for motor learning in future research. 

𝑅 = −𝑟1𝜃𝑗𝑒 − 𝑟2𝑋𝑡𝑖𝑝 + 𝑟3𝐹𝑠 − 𝑢𝑎 + 𝑡                              (3)  

 where, 

𝜃𝑗𝑒: joint kinematic errors for MCP and PIP joints 

𝑋𝑡𝑖𝑝: tip point error for index and thumb fingers 

𝐹𝑠: tip force 

𝑢𝑎: reinforcement learning torque output 

t: time reward 

Reward function R will provide negative reward for kinematic errors and positive 

reward for tip force. As spring stiffness increases (tip force increases) higher reward 

will be received. 

Figure 3.10. Architecture of admittance controller for index finger  
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Figure 3.11. Architecture of admittance controller for thumb finger  

In admittance control structure, the virtual mass, spring and damping parameters are 

selected by trial and error. However, spring constant, 𝑘𝑣 effects the system 

performance the most. The control gets more stiff as 𝑘𝑣 increases thus allowing less 

kinematic error. 

3.5 Modeling of the Rehabilitation Protocol 

The patient is assumed to have a complete functional loss. Therefore, the neural 

network representing the motor control network to be trained is not able to perform 

any motor output to achieve the reference pinching motion. 

The rehabilitation model is divided into two parts. First, the PID and the admittance 

controllers are compared, then, the admittance controller’s performance is 

investigated by changing the spring constant, 𝑘𝑣. A pinching task namely, periodic 

pinching is selected as reference action for the patient to learn. The task is determined 

from the finger joint angels given in Figure 3.12 and defined as motor reference 

inputs given in Figure 3.13, as well.  
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Figure 3.12. Reference finger motion for periodic pinching 

 

 

Figure 3.13. Reference motor inputs for periodic pinching 
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To compare the effect of controllers on recovery and learning performance, assist as 

needed metric, J  [56] is used as follows: 

𝐽 = ∑ 𝜆𝐸(𝜃𝑖 − 𝜃𝑑)2 + 𝜆𝑅(𝑇𝑖)
2                                 (4) 

where,  𝜃𝑑 is the desired position of the finger and 𝜃𝑖 is the position of the finger at 

ith step. 𝑇𝑖 is the applied motor torque to the system by the motor.  𝜆𝐸 and 𝜆𝑅 are the 

weight constants to determine the relative effect of torque and error. Note that 

minimizing the assist as needed metric requires minimizing the kinematic error and 

applied motor torque. In the simulations, 𝜆𝐸 = 0.1 and 𝜆𝑅 = 0.5 was taken. 

In addition, to compare the learning performance, reward function is used. Note that, 

reward function is modeled in a way that the highest reward is obtained with the least   

kinematic error. Therefore, higher reward results in better learning. 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

In this chapter, results of the training sessions and rehabilitation modeling is 

presented. 2 types of simulations are carried out. In Table 4.1 simulation details for 

2 control strategies are presented. In the next section, results of the simulation details 

provided in Table 4.2 are discussed.  

Table 4.1 Simulation details of 2 types of control strategies 

Simulation Number Controller  kv 

1 PID - 

2 Admittance 1.2 

4.1 Performances of PID and Admittance Controllers on Rehabilitation  

The task, i.e., periodic circular pinching motion, is defined for both kinematic control 

system and interaction control system. The patient is rehabilitated in simulations 1 

and 2 with the help of PID and Admittance controllers, respectively. The 

reinforcement learning is simulating the motor learning process of the patient’s brain 

due to the applied robotic therapy. In a real implementation, designed video stimuli 

are observed by the patient and he/she is asked to perform the same pinching motion 

observed in the video stream. Kinematic and kinetic references of the observed 

action are known and set as reference inputs for the robotic system. In Figure 4.1. 

the reference angle values of the index and thumb finger joints are presented for 

periodic pinching. 
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Figure 4.1. Reference finger joint angles for periodic pinching 

The overall system in Figure 4.2 is designed and implemented in [2], [28]. The 

cognitive architecture together with the interaction type of control system will be 

evaluated and implemented in the project with the grant number TÜBİTAK 

121E107. 
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Figure 4.2. Real implementation scheme of Exopinch 

As the training process goes on, reinforcement learning agents are compared by 

obtaining the reward values from training results. The training process starts with 

maximum exploration and optimal neural structure for the designed rehabilitation 

protocol is tried to be found. After 500 to 1000 training episodes, depending on the 

rehabilitation protocol, reward value converges to a maximum point indicating that 

the patient is moved forward in rehabilitation. The reinforcement learning agents that 

reach the average of the converged reward value are selected. These agents of 

reinforcement learning are modeled as treated patients. After the training procedure, 

trained agents are saved and used as patient models for controller performance 

comparison and further training. Retraining of an agent as continuation of the 

rehabilitation protocol is beyond the scope of this thesis; therefore, will not be 

investigated. 

Note that, 𝑘𝑣 is selected as 1.2 to make the controller relatively stiff compared to 

lower values. As 𝑘𝑣 increases, controller becomes stiffer by allowing less error.  
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In simulations 1 and 2, although the reward is increased, meaning the pinching action 

is done with more accuracy, slacking must be checked to see whether the controller 

or the patient performs the action. In addition to the evaluation of the cost function, 

J, simulation results are also compared to the references in Figure 4.1 to check 

slacking. 

In simulations 1 and 2, the rehabilitation protocol is performed, and the following 

results are obtained. Motor learning guided by the PID, and the admittance controlled 

robotic system continues until the learning reaches to a maximum. In Figure 4.3, the 

movement of the index and thumb finger as joints angle output trained with PID 

controller is given. Only a slight pinching action is observed. Compared to the 

reference input, it can be concluded that the slacking has occurred. The main reason 

is that PID controller is dictating the movement to the patient. In other words, the 

kinematic controller defines the motion generated by the voluntary torque as a 

disturbance and acts to reject the disturbance which attenuates the error formation, 

motor variability, and the search for motor learning. 

 

Figure 4.3. Rehabilitation results of the patient trained with PID controller 
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In Figure 4.4 the movement of the index and thumb finger as joints angle output 

trained with admittance controller is given. In contrast to the PID controller, both 

flexion and extension actions are attempted. Slacking is occurred with admittance 

controller as well; however, compared to the PID trained patient slacking is relatively 

less. Moreover, comparing performances of PID and admittance trained patients 

from the reward values given in Figure 4.5, the admittance results in better training 

than PID since it has obtained higher reward value. 

The main reason of the admittance controller’s superiority is that the control system 

of the robot is interacting with the human control system. As a result, kinematic 

errors appear, and motor learning finds space to explore and exploit as a skill. PID 

controller is quite accurate while resulting in very little error which results in no 

learning (slacking).  

 

Figure 4.4. Rehabilitation results of the patient trained with admittance controller 



 

 

40 

 

Figure 4.5. Reward values obtained from PID and admittance trained patients 

It is observed that learning of the patient with the admittance controller highly 

depends on the virtual stiffness value 𝑘𝑣 and the PID controller without an additional 

“assist as needed” component would result in slacking. In the following section, 

effect of 𝑘𝑣 on learning is investigated. 

4.2 Effect of Virtual Stiffness (𝒌𝒗) on Rehabilitation 

In the previous section, performances of the admittance and the PID controllers were 

investigated, and it is found out that one of the main factors effecting the admittance 

controller performance on learning is the virtual spring stiffness, 𝑘𝑣. In this section, 

the results of the simulations given in Table 4.2 are presented. 
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Table 4.2 Simulation details of different 𝑘𝑣 values 

Simulation Number Controller  Spasticity Tip Force kv 

3 Admittance Medium Medium 0.1 

4 Admittance Medium Medium 0.5 

5 Admittance Medium Medium 0.8 

6 Admittance Medium Medium 1 

 

For each 𝑘𝑣 value ranging from 0.1 to 1, patient is trained with admittance controller. 

Results of the training is compared with assist as needed metric J, and reward value. 

In Figure 4.6, reward values obtained from the reinforcement learning is given. As 

the stiffness decreases, admittance controller allows for more kinematic error so that 

motor learning is promoted. In other words, motor learning finds space to explore 

and exploit the rewarded actions to take the motor control. From the simulation 

results, it is found out that kv and learning are inversely correlated. In Table 4.3 the 

results of simulations done with trained agent (patient) are given. As reward 

increases, learning enhances thus assistance decreases.  

Table 4.3 Results of the simulations depending on different kv values 

Simulation Number Controller  kv Reward J 

3 Admittance 0.1 -481.48 11997 

4 Admittance 0.5 -815.44 15345 

5 Admittance 0.8 -911.96 18271 

6 Admittance 1 -1517.68 20674 

 

In Table 4.4, RMS values of the three motors are given. As learning increases, 

applied motor torque decreases meaning that patient is learning the kinematics of the 

movement and can apply more force, thus motor torques decrease.  
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Table 4.4 RMS values of motor torque inputs depending on different kv values 

Simulation Number kv Motor 1 Motor 2 Motor 3 

3 0.1 0.8513 0.9864 0.6656 

4 0.5 1.2542 1.1743 0.7373 

5 0.8 1.4459 1.4428 0.8368 

6 1 1.4942 1.4926 0.8598 

 

In Figure 4.6, the results of assistance applied to the trained patient is given. It is 

found out that kv and J are directly proportional. Note that, assist as needed metric is 

expected to be lower as learning increase. Therefore, results are coherent with the 

therapy process as well. 

 

Figure 4.6. Reward values obtained from patients trained with different kv values 
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Figure 4.7. Assistance applied the system for different kv values 
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CHAPTER 5  

5 CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

This study focuses on the effect of control strategies over therapy process with a 

patient model. The performance of the Exopinch robotic mirror therapy system is 

simulated with kinematic and interaction control systems. One of the key aspects is 

that the patient is modeled with reinforcement learning algorithm. During the 

simulations, the following results have been obtained:  

• PID controllers without an assist as needed component are not suitable for 

the complete rehabilitation process since controller dictates the movement to 

the patient. According to the patient’s state, kinematic controllers should be 

used for a certain period in order not to suppress the motor learning process.  

• Robotic control strategy must interact with the human control system and let 

the human make errors during motion generation. Full assistance resulted in 

slacking. 

• Admittance based control strategies are superior compared to the kinematic 

control strategies in terms of learning. 

• Stiffness of the admittance controller effects the learning performance 

severely. Stiffness and learning are inversely correlated. 

• Under actuation of the thumb finger and full actuation of the index finger 

should have different approaches. If the mechanism is fully actuated, 

kinematic controllers result in slacking; however, under actuation may result 

differently. Investigation of the effect of under actuation is beyond the scope 

of this thesis.  

• As the learning increases, assist as needed metric, J decreases as expected. In 

the simulations 𝑘𝑣 = 0.1, is the best case for learning and J value is obtained 
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less compared to the other cases. During recovery process, J is expected to 

decrease and ultimately go to zero while the patient gaining motor functions.  

• Neural networks are used to represent the patient. Reinforcement learning is 

selected as neural network structure since it is a good representative of human 

motor learning. In the simulations, learning parameters are determined by 

trial and error since the learning is model based.   

5.2 Future Works 

As further studies, the internal model for motor learning must be advanced.  More 

realistic internal models can be developed as presented in [57]. Effect of exploration 

and exploitation should be more distinct for the new models. Developed models 

should also be tested on real patients. Rehabilitation data taken from patients can be 

used with system identification tools to determine new model parameters.  

In addition, different control strategies and assist as needed approaches will be 

simulated. Assist as needed added kinematic controllers’ performance should be 

investigated since it is observed that slacking decreases as the controller allows for 

error.  

Effect of reward function’s parameters (ri) will be investigated. How will the 

learning process have affected while the parameters changed dynamically 

throughout the rehabilitation process? In the simulations, only the pinching action is 

simulated. 

During the simulation processes, it is observed that under actuation in the thumb 

finger may result in different learning dynamics than fully actuated index finger. 

Although control strategies applied to both fingers are the same, controller 

performances were different. The effect of under actuation of the index finger can be 

investigated and learning performances will be compared. Learning may occur with 

full kinematic control strategies if the under actuation is added.
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APPENDICES 

A. Matlab Code for Inverse Kinematics and Reference Calculations 

order=1; 
fel=0; 
Ts=0.01; %sample time 
Te = 1.4; 
t=0:Ts:Te; 
 
N=length(t); 
 
 
load('th_index_ref_task1.mat') 
load('th_thumb_ref_task1.mat') 
 
load('th_index_ref_task2.mat') 
load('th_thumb_ref_task2.mat') 
 
load('th_index_ref_task0.mat') 
load('th_thumb_ref_task0.mat') 
 
sat=0.05; 
fs=0.3; %spring force at the tip 
k_obj=0.25; 
mv=0.1; 
kv=0.3; 
cv=0.5; 
 
C=[20 0.5 200]; %angle error, tip force, tip point kin 
 
task=1 
 
if task==1 
 
%Index Motors Input Set  
 
a11=3.825e-2; 
a12=4.57e-2; 
a2=5e-2; 
a3=4.7e-2; 
a41=3e-2; 
a42=2.5e-2; 
a5=5e-2; 
a51=3.5e-2; 
a5T=a5+a51; 
a6=4.5e-2; 
a71=5e-2; 
a72=1.5e-2; 
a8=9.6e-2; 
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a9=8e-2; 
 
aG=4e-2; 
thG=pi; 
b2=2.5e-2; 
b3=4.82e-2; 
b41=3e-2; 
b42=1.5e-2; 
beta1=110*pi/180; 
beta2=10*pi/180; 
 
 
task1_mcp=-(35*pi/180)*sin(pi*(t/Te)); 
task1_pip=-(60*pi/180)*sin(pi*(t/Te)); 
hold1=zeros(1,50); 
th4=[task1_mcp task1_mcp task1_mcp]; 
th7=[task1_pip task1_pip task1_pip]; 
 
Tf=Ts*length(th4); 
 
for i=1:length(th4) 
front_A0_in(i,1)=Ts*i; 
back_H0_in(i,1)=Ts*i; 
th_MCP_in(i,1)=Ts*i; 
th_PIP_in(i,1)=Ts*i; 
 
tip_pos(i,1)=Ts*i; 
xK0_ref(i,1)=Ts*i; 
yK0_ref(i,1)=Ts*i; 
end 
 
th_MCP_in(:,2)=th4'; 
th_PIP_in(:,2)=th7'-th4'; 
 
 
[th2,th3]=V2_L1_inv_kin(th4,a11,a12,a2,a3,a41,a42); 
[th5,th6]=V2_L3_inv_kin(th4,th7,a41,a42,a5,a6,a71,a72); 
[th8,th9]=V2_L2mod_inv_kin(th2,th3,thG,th5,a2,a3,a51,a8,aG,a9,beta2); 
 
th10=th6+pi-beta1; 
[th11,th12]=V2_L4_direct_kin(th7,th10,b2,b3,b41,b42,a71,a72); 
th11_d=(5*th7/3)-(2*th4/3); 
 
front_A0_in(:,2)=th2'*180/pi; 
back_H0_in(:,2)=th9'*180/pi; 
 
ta11=th3-th2-pi; 
ta12=(pi/2)+(th4-th3)-atan(a42/a41); 
ta21=th8-th9-pi; 
ta22=2*pi+th5+beta2-th8; 
ta31=th6-th5-pi;  
ta32=(pi/2)+(th7-th6)-atan(a72/a71); 
ta41=th12-th10+pi;  
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ta42=(pi/2)+(th11-th12)-atan(b42/b41); 
                  
F1=[(ta11'-(pi/2));(ta21'-(pi/2));(ta31'-(pi/2));(ta41'-(pi/2))]; 
F2=[(ta12'-(pi/2));(ta22'-(pi/2));(ta32'-(pi/2));(ta42'-(pi/2))]; 
F3=[th11'-th11_d']; 
F=[F1;F2;F3]; 
 
xA0=0*th2; yA0=0*th2; 
xB0=a12*ones(1,length(th2)); yB0=-a11*ones(1,length(th2)); 
xA=a2*cos(th2); yA=a2*sin(th2); 
xB=xB0+a42*cos(th4)+a41*cos(th4+(pi/2)); 
yB=yB0+a42*sin(th4)+a41*sin(th4+(pi/2)); 
% xB=xA+a3*cos(theta3_1); yB=yA+a3*sin(theta3_1); 
xC=0*th2; yC=-a11*ones(1,length(th2)); 
xD=xB0+a42*cos(th4); yD=yB0+a42*sin(th4); 
xE0=xB0+2*a42*cos(th4); yE0=yB0+2*a42*sin(th4); 
xB1=xB+a5*cos(th5); yB1=yB+a5*sin(th5); 
xE=xB1+a6*cos(th6); yE=yB1+a6*sin(th6); 
xF=xE0+a72*cos(th7); yF=yE0+a72*sin(th7); 
xF0=xE0+2*a72*cos(th7); yF0=yE0+2*a72*sin(th7); 
xJ=xF0+b42*cos(th11); yJ=yF0+b42*sin(th11); 
xK0=xF0+2*b42*cos(th11); 
yK0=yF0+2*b42*sin(th11); 
 
xK0_ref(:,2)=xK0; 
yK0_ref(:,2)=yK0; 
 
tip_pos(:,2)=xK0.^2+yK0.^2; 
 
xR=xE+b2*cos(th10); yR=yE+b2*sin(th10); 
xP=xR+b3*cos(th12); yP=yR+b3*sin(th12); 
 
xH0=aG*cos(thG); yH0=aG*sin(thG); 
xH=xH0+a9*cos(th9);yH=yH0+a9*sin(th9); 
xG=xB+a51*cos(th5+beta2);yG=yB+a51*sin(th5+beta2); 
 
%%%---------------Index END-------------------%%%% 
 
 
 
%%%---------------Thumb Finger-----------------%%%% 
 
c4=6e-2; 
a72=1.5e-2; 
b42=1.25e-2; 
c11=5.03e-2; 
c12=4.5e-2; 
c2=5e-2; 
a71=6e-2; 
c3=10e-2; 
b2=4e-2; 
b3=6.8e-2; 
b41=3.5e-2; 
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beta1=-44*pi/180; 
 
 
task1_th7=-(30*pi/180)*sin(pi*(t/Te)); 
task1_lm4=-(20*pi/180)*sin(pi*(t/Te)); 
th7=[task1_th7 task1_th7 task1_th7]; 
lm4=[task1_lm4 task1_lm4 task1_lm4]; 
 
 
th11_d=(23*lm4/8)-(15*pi/16); 
 
[lm2,lm3]=V2_L5_inv_kin(lm4,th7,c11,c12,c2,c3,c4,a71,a72); 
 
th10=lm3+pi-beta1; 
[th11,th12]=V2_L4_direct_kin(th7,th10,b2,b3,b41,b42,a71,a72); 
% th11_d=(5*th7/3)-(2*th4/3); 
ta51=lm3-lm2-pi;    
 ta52=(pi/2)+(th7-lm3)-atan(a72/a71); 
 ta41=th12-th10+pi;  
 ta42=(pi/2)+(th11-th12)-atan(b42/b41); 
  
 
% --------------------------- 
                  
F1=[(ta51-(pi/2)).^2;1*((2*pi-ta41)-(pi/2)).^2]; 
F2=[(ta52-(pi/2)).^2;1*(ta42-(pi/2)).^2]; 
F3=[(th11(1)-th11_d(1))^2; (th11(end)-th11_d(end))^2]; %(th11(6)-
th11_d(6))^2;  
F=0.1*(sum(F1)/(length(F1)))+0.45*(sum(F2)/(length(F2)))+0.45*(sum((F3)
)/(length(F3))); % 
 
% F=[F1;F2;F3]; 
 
xA10=0*th7; yA10=0*th7; 
xC=xA10; yC=0*th7-c11; 
xB10=c12*ones(1,length(th7)); yB10=-c11*ones(1,length(th7)); 
xA11=c2*cos(lm2); yA11=c2*sin(lm2); 
xE0=xB10+c4*cos(lm4); yE0=yB10+c4*sin(lm4); 
xF=xE0+a72*cos(th7); yF=yE0+a72*sin(th7); 
xE=xA11+c3*cos(lm3); yE=yA11+c3*sin(lm3); 
xF0=xE0+2*a72*cos(th7); yF0=yE0+2*a72*sin(th7); 
xJ=xF0+b42*cos(th11); yJ=yF0+b42*sin(th11); 
xR=xE+b2*cos(th10); yR=yE+b2*sin(th10); 
xP=xR+b3*cos(th12); yP=yR+b3*sin(th12); 
xK0=xF0+2*b42*cos(th11);yK0=yF0+2*b42*sin(th11); 
 
for i=1:length(th7) 
l2(i,1)=Ts*i; 
l2(i,2)=lm2(1,i)*180/pi-59.1; 
 
l4(i,1)=Ts*i; 
l4(i,2)=lm4(1,i)*180/pi-52.5; 
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th_TMCP_in(i,1)=Ts*i; 
th_TPIP_in(i,1)=Ts*i; 
end 
 
th_TMCP_in(:,2)=lm4'; 
th_TPIP_in(:,2)=th7'-lm4'; 
 
 
end 
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B. Matlab Code for Reinforcement Learning 

mdl = 'El_Mekanizmasi_Montaj3'; 
open_system(mdl) 
useFastRestart = true; 
useGPU = true; 
 
numAct = 4; 
actionInfo = rlNumericSpec([numAct 1],'LowerLimit',-
0.6,'UpperLimit',1); 
actionInfo.Name = 'joint_torque'; 
actionInfo.Description = 'MCP_T, PIP_T,TMCP_T, TPIP_T'; 
numActions = actionInfo.Dimension(1); 
 
open_system([mdl '/PLANT/Index_Finger_2/generate observations']) 
 
numObs = 37; 
observationInfo = rlNumericSpec([numObs 1],... 
    'LowerLimit',[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -
inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -
inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]',... 
    'UpperLimit',[ inf inf inf inf inf inf inf inf inf inf inf inf inf 
inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf 
inf inf inf inf inf inf]'); 
observationInfo.Name = 'observations'; 
observationInfo.Description = 'MCP_angle, PIP_angle, MCP_vel, PIP_vel, 
xK0, yK0, MCP_in, PIP_in, th_DIP, DIP_vel, xe11, xe22, xe33, xe44, 
xe55, ye11, ye22, ye33, ye44, ye55, Fs, TMCP_in, TPIP_in, th_TMCP, 
TMCP_vel,th_TPIP, TPIP_vel, txe11, txe22, txe33, txe44, txe55, tye11, 
tye22, tye33, tye44, tye55'; 
numObservations = observationInfo.Dimension(1); 
 
open_system([mdl '/PLANT/Index_Finger_2/calculate reward']) 
 
open_system([mdl '/PLANT/Index_Finger_2/stop simulation']) 
 
env = rlSimulinkEnv(mdl,[mdl '/PLANT/Index_Finger_2/RL 
Agent'],observationInfo,actionInfo); 
 
 
rng(0) 
 
criticLayerSizes = [400 300]; 
statePath = [ 
    imageInputLayer([numObs 1 1],'Normalization','none','Name','State') 
    fullyConnectedLayer(criticLayerSizes(1), 'Name', 'CriticStateFC1', 
...  
            'Weights',2/sqrt(numObs)*(rand(criticLayerSizes(1),numObs)-
0.5), ... 
            'Bias',2/sqrt(numObs)*(rand(criticLayerSizes(1),1)-0.5)) 
    reluLayer('Name','CriticStateRelu1') 
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    fullyConnectedLayer(criticLayerSizes(2), 'Name', 'CriticStateFC2', 
... 
            
'Weights',2/sqrt(criticLayerSizes(1))*(rand(criticLayerSizes(2),criticL
ayerSizes(1))-0.5), ...  
            
'Bias',2/sqrt(criticLayerSizes(1))*(rand(criticLayerSizes(2),1)-0.5)) 
    ]; 
 
actionPath = [ 
    imageInputLayer([numAct 1 1],'Normalization','none', 
'Name','Action') 
    fullyConnectedLayer(criticLayerSizes(2), 'Name', 'CriticActionFC1', 
... 
            'Weights',2/sqrt(numAct)*(rand(criticLayerSizes(2),numAct)-
0.5), ...  
            'Bias',2/sqrt(numAct)*(rand(criticLayerSizes(2),1)-0.5)) 
    ]; 
commonPath = [ 
    additionLayer(2,'Name','add') 
    reluLayer('Name','CriticCommonRelu1') 
    fullyConnectedLayer(1, 'Name', 'CriticOutput',... 
            'Weights',2*5e-3*(rand(1,criticLayerSizes(2))-0.5), ... 
            'Bias',2*5e-3*(rand(1,1)-0.5)) 
    ]; 
 
 
criticNetwork = layerGraph(); 
criticNetwork = addLayers(criticNetwork,statePath); 
criticNetwork = addLayers(criticNetwork,actionPath); 
criticNetwork = addLayers(criticNetwork,commonPath); 
criticNetwork = 
connectLayers(criticNetwork,'CriticStateFC2','add/in1'); 
criticNetwork = 
connectLayers(criticNetwork,'CriticActionFC1','add/in2'); 
 
 
criticOpts = rlRepresentationOptions('LearnRate',1e-
3,'GradientThreshold',1); 
 
critic = 
rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,'Observ
ation',{'State'},'Action',{'Action'},criticOpts); 
 
 
 
actorLayerSizes = [400 300]; 
actorNetwork = [ 
    imageInputLayer([numObs 1 1],'Normalization','none','Name','State') 
     
    fullyConnectedLayer(actorLayerSizes(1), 'Name', 'ActorFC1', ... 
            'Weights',2/sqrt(numObs)*(rand(actorLayerSizes(1),numObs)-
0.5), ...  
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            'Bias',2/sqrt(numObs)*(rand(actorLayerSizes(1),1)-0.5)) 
    reluLayer('Name', 'ActorRelu1') 
    fullyConnectedLayer(actorLayerSizes(2), 'Name', 'ActorFC2', ...  
            
'Weights',2/sqrt(actorLayerSizes(1))*(rand(actorLayerSizes(2),actorLaye
rSizes(1))-0.5), ...  
            
'Bias',2/sqrt(actorLayerSizes(1))*(rand(actorLayerSizes(2),1)-0.5)) 
    reluLayer('Name', 'ActorRelu2') 
    fullyConnectedLayer(numAct, 'Name', 'ActorFC3', ...  
            'Weights',2*5e-3*(rand(numAct,actorLayerSizes(2))-0.5), ...  
            'Bias',2*5e-3*(rand(numAct,1)-0.5))                        
    tanhLayer('Name','ActorTanh1') 
    ]; 
 
 
actorOptions = rlRepresentationOptions('LearnRate',1e-
02,'GradientThreshold',1); 
 
actor = 
rlDeterministicActorRepresentation(actorNetwork,observationInfo,actionI
nfo,'Observation',{'State'},'Action',{'ActorTanh1'},actorOptions); 
 
agentOpts = rlDDPGAgentOptions(... 
    'SampleTime',Ts,... 
    'TargetSmoothFactor',1e-3,... 
    'DiscountFactor',0.99, ... 
    'MiniBatchSize',128, ... 
    'ExperienceBufferLength',1e6, ... 
    'SaveExperienceBufferWithAgent',true);  
agentOpts.NoiseOptions.Variance = 0.5; 
agentOpts.NoiseOptions.VarianceDecayRate = 0; 
agentOpts.NoiseOptions.MeanAttractionConstant = 2; 
 
agent = rlDDPGAgent(actor,critic,agentOpts); 
 
maxepisodes = 5000; 
maxsteps = ceil(Tf/Ts); 
trainOpts = rlTrainingOptions(... 
    'MaxEpisodes',maxepisodes, ... 
    'MaxStepsPerEpisode',maxsteps, ... 
    'ScoreAveragingWindowLength',20, ... 
    'Verbose',false, ... 
    'Plots','training-progress',... 
    'StopTrainingCriteria','EpisodeCount',... 
    'StopTrainingValue',5000); 
 
doTraining = false; 
if doTraining 
    % Train the agent. 
    trainingStats = train(agent,env,trainOpts); 
else 
end 


